Part Number Hot Search : 
DSP56 FAM3D50J 01VSN22 BSP324 ROCHI 11101 HB3201 10ELS2
Product Description
Full Text Search
 

To Download SP6203EM5-L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s april 2012 rev. 2.0.0 exar corporation www.exar.com 48720 kato road, fremont ca 94538, usa tel. +1 510 668 - 70 00 C fax. +1 510 668 - 70 01 general description the sp6203 and sp 6205 are ultra low noise cmos ldos with very low dropout and ground current. the noise performance is achieved by means of an external bypass capacitor without sacrificing turn - on and turn - off speed critical to portable applications. extremely stable and e asy to use, these devices offer excellent psrr and line/load regulation. target applications include battery - powered equipment such as portable and wireless products. regulators' ground current increases only slightly in dropout. fast turn - on/turn - off enab le control and an internal 30 ? pull down on output allows quick discharge of output even under no load conditions. both ldos are protected with current limit and thermal shutdown. both ldos are available in fixed & adjustable output voltage versions and co me in an industry standard 5 - pin sot - 23 and small 2x3 mm 8 - pin dfn packages. for sc - 70 1 00ma cmos ldo, sp62 1 3 is available. applications ? battery - powered systems ? medical equipments ? mp3/cd players ? digital cameras features ? 300ma/ 500ma output current ? sp6203: 3 00ma C sp6205: 500ma ? low dropout voltage: 0.6 pmos fet ? 2.7v to 5.5v input voltage ? fixed and adjustable output voltage ? accurate output voltage : 2% over temp . ? 67db power supply rejection ratio ? 1 2v rms low output noise ? unconditionally stable with 2.2f ceram ic ? low quiescent current: 5a ? low ground current: 350a at 500ma ? fast turn - on and turn - off: 60s ? very good load/line regulation: 0.07/0.0 % ? current limit and thermal protection ? rohs compliant green/halogen free 5 - pin sot23 and 8 - pin dfn packages typical application diagram fig. 1 : sp6203 /sp 6205 application diagram
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 2 / 14 rev. 2 .0.0 absolute maximum rat ings these are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. exposure to absolute maximum rating conditions for extended periods of time may affect reliability. v in ................................ .............................. - 2 v to 6.0v output voltage v ou t ............................... - 0.6v to v in +1v enable input voltage v en ...... ........ .. .. ............... - 2v to 6v storage temperature .............................. - 65c to 150c power dissipation ............................... internally limited 1 lead tem perature (soldering, 5 sec) ................... +260 c junction temperature ................................ ........ +150 c operating ratings input voltage range v in .......................... + 2 .7 v to +5.5 v enable input voltage v en ...... ........ .. ... ...............0 to 5.5 v junction temperature range ................. - 40c to + 1 25 c thermal resistance ................................ ...................... sot - 23 - 5 ( ja ) ................................ ............. 191c/w dfn - 8 ( ja ) ................................ ................... 59c/w note 1: maximum power dissipation can be calculated using the formula: pd = (t j (max) - t a ) / ja , where t j (max) is the junction temperature, t a is the ambient temperature and ja is the junction - to - ambient thermal resistance. jc is 6c/w for this package. exceeding the maximum allowable power dissipation will result in excessive die temperature and the regula tor will go into thermal shutdown mode. electrical specifica tions specifications with standard type are for an operating junction temperature of t j = 25c only; limits applying over the full operating junction temperature range are denoted by a ?. minimum and maximum limits are guaranteed thro ugh test, design, or statistical correlation. typical values represent the most likely parametric norm at t j = 25c, and are provided for reference purposes only. unless otherwise indicated, v in = (v out + 0.5v) to 6v , c in = 2.2f, c out = 2.2 f and i out = 1 00a , t j = C 40c to 85c . parameter min. typ. max. units conditions input voltage 6 v ? ? out output voltage temperature coefficient 2 50 ppm/ c ? out / ? ? ? out (v in below 6v) load regulation 3 0.07 0.13 0.3 0.5 % i out = 0.1ma to 300ma (sp6203) i out = 0.1ma to 500ma (sp6205) dropout voltage for v out 4 0.06 60 120 180 300 300 500 mv ? ? out = 0.1ma i out = 100ma i out = 200ma i out = 300ma (sp6203) i out = 500ma (sp6205) ground pin current 5 45 110 175 235 350 100 330 490 a ? ? ? out = 0.1ma (i quiescent ) i out = 100ma i out = 200ma i out = 300ma (sp6203) i out = 500ma (sp6205) shutdown supply current 0.01 1 a ? en < 0.4v (shutdown) current limit 0.33 0.55 0.50 0.85 0.8 1.4 a v out = 0 v (sp6203) v out = 0 v (sp6205) thermal shutdown junction temperature 170 c regulator turns off thermal shutdown hysteresis 12 c regulator turns on again at 158 c power supply rejection ratio 67 db f output noise voltage 6 150 630 12 50 75 v rms c byp = 10n f, i out = 0.1ma c byp = 10n f, i out = 300ma c byp = 10n f, i out = 0.1ma c byp = 10n f, i out = 300ma thermal regulation 7 0.05 %/w ? out / ? d wake - up time (t wu ) 8 (from shutdown mode) 25 50 s v in 10 i out = 30ma
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 3 / 14 rev. 2 .0.0 parameter min. typ. max. units conditions turn - on time (t on ) 9 (from shutdown mode) 60 120 s v in 4v 10 i out = 30ma turn - off time (t off ) 100 15 250 25 s i out = 0.1ma, v in 4v 10 i out = 300ma, v in 4v 10 output discharge resistance 30 ? no load enable input logic low voltage 0.4 v ? regulator shutdown enable input logic high voltage 1.6 v ? regulator enabled note 2: output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range. note 3: regulation is measured at constant junction temperature using low duty cycle pulse testing. changes in output voltage due to heating effects are covered by the thermal regulation specification. note 4: dropout - voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1v differential. note 5: ground pin current is the regulator quiescent current. the total current drawn from th e supply is the sum of the load current plus the ground pin current. note 6: output noise voltage is defined within a certain bandwidth, namely 10hz < bw < 100khz. an external bypass cap ( 10nf) from reference output (byp pin) to ground significantly reduce s noise at output. note 7: thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load and line regulation effects. specifications are for a 300ma load pulse at v in = 6v for t = 1ms. note 8: the wake - up time (t wu ) is defined as the time it takes for the output to start rising after enable is brought high. note 9: the total turn - on time is called the settling time (t s ), which is defined as the condition when both the output and th e bypass node are within 2% of their fully enabled values when released from shutdown. note 10: for output voltage versions requiring v in to be lower than 4 v, timing (t on & t off ) increases slightly. block diagram fig. 2 : sp6203/ sp 6205 functional diagram
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 4 / 14 rev. 2 .0.0 pin assignment 5 - pin sot23 8 - pin dfn fig. 3 : sp6203/ sp 6205 pin assignment pin description name sot - 23 - 5 description v in 1 power supply input gnd 2 ground terminal en 3 enable/shutdown - logic high = enable - logic low = shutdown byp/adj 4 bypass - fixed voltage option: reference bypass input for ultra - quiet operation. connecting a 10nf cap on this pin reduces output noise. adjustable input C adjustable voltage option: adjustable regulator feedback input. connect to a resistive voltage - divider network. v out 5 regulator output voltage name dfn - 8 description v out /adj 1 regulator output voltage - fixed voltage option: connect to pin 8 v out . adjustable input C adjustable voltage option: adjustable regulator feedback input. connect to a resistive voltage - divider network. byp/nc 2 bypass - fixed voltage option: reference bypass input for ultra - quiet operation. connecting a 10nf cap on this pin reduces output noise. no connect C adjustable voltage option. gnd 3 ground terminal en 4 enable/shutdown - logic high = enable - logic low = shutdown v in 5 power supply input nc 6 no connect nc 7 no connect v out 8 regulator output voltage
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 5 / 14 rev. 2 .0.0 ordering information part number ambient temperature range marking package packing quantity voltage opti o n note 1 sp6203em5 - l - 40c t a + 125 c q2ww sot - 23 - 5 bulk adj halogen free sp6203em5 - l/tr 2.5k/ tape & reel sp6203em5 - l - 2 - 5 l2ww bulk 2.5v halogen free sp6203em5 - l - 2 - 5/tr 2.5k/ tape & reel sp6203em5 - l - 2 - 8 q3ww bulk 2.8v halogen free sp6203em5 - l - 2 - 8/tr 2.5k/ tape & reel sp6203em5l - 2 - 85 h2ww bulk 2.85v halogen free sp6203em5l - 2 - 85/tr 2.5k/ tape & reel sp6203em5 - l - 3 - 0 m2ww bulk 3.0v halogen free sp6203em5 - l - 3 - 0/tr 2.5k/ tape & reel sp6203em5 - l - 3 - 3 j2ww bulk 3.3v halogen free sp6203em5 - l - 3 - 3/tr 2.5k/ tape & reel sp6203er - l - 40c t a + 125 c d0 yww xxx dfn8 bulk adj halogen free sp6203er - l/tr 3k/ tape & reel sp6203er - l - 1 - 8 e0 yww xxx bulk 1.8v halogen free sp6203er - l - 1 - 8 3k/ tape & reel sp6205em5 - l - 40c t a + 125 c a3ww sot - 23 - 5 bulk adj halogen free sp6205em5 - l/tr 2.5k/ tape & reel sp6205em5 - l - 1 - 8 x2ww bulk 1.8v halogen free sp6205em5 - l - 1 - 8/tr 2.5k/ tape & reel sp6205em5 - l - 2 - 5 v2ww bulk 2.5v halogen free sp6205em5 - l - 2 - 5/tr 2.5k/ tape & reel sp6205em5 - l - 2 - 8 e3ww bulk 2.8v halogen free sp6205em5 - l - 2 - 8/tr 2.5k/ tape & reel sp6205em5 - l - 2 - 85 s2ww bulk 2.85v halogen free sp6205em5 - l - 2 - 85/tr 2.5k/ tape & reel sp6205em5 - l - 3 - 0 w2ww bulk 3.0v halogen free sp6205em5 - l - 3 - 0/tr 2.5k/ tape & reel sp6205em5 - l - 3 - 3 t2ww bulk 3.3v halogen free sp6205em5 - l - 3 - 3/tr 2.5k/ tape & reel sp6205er - l - 40c t a + 125 c f0 yww xxx dfn8 bulk adj halogen free sp6205er - l/tr 3k/ tape & reel sp6205er - l - 2 - 5 g0 yww xxx bulk 2.5v halogen free sp6205er - l - 2 - 5/tr 3k/ tape & reel y = year C ww = work week C x = lot number ; when applicable.
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 6 / 14 rev. 2 .0.0 typical performance characteristics all data taken at v in = 2.7v to 5.5v, t j = t a = 25c, unless otherwise specified - schematic and bom from application information section of this datasheet. fig. 4 : current limit fig. 5 : turn - on time, r load =50 (60ma) load =6 (500ma) load = 30k ( o =100a ~500ma fig. 9 : regulation, line step from 4v to 6v, i o =1ma
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 7 / 14 rev. 2 .0.0 fig. 10 : start up waveform, v in =3.5v, i o =500ma fig. 11 : start up waveform, slow v in , no load fig. 12 : start up waveform, slow v in , 500ma output load fig. 13 : start up waveform, slow v in , c out =1000f, i o =0ma fig. 14 : start up waveform, slow v in , c out =1000f , i o =500ma fig. 15 : fast v in , no load
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 8 / 14 rev. 2 .0.0 fig. 16 : fast v in , 500ma output load fig. 17 : fast v in = 1000f output load fig. 1 8 : fast v in , c out =1000f, i o =500ma fig. 19 : output noise, c byp = 10nf fig. 20 : output noise, c byp = open
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 9 / 14 rev. 2 .0.0 theory of operation g eneral o verview the sp6203/6205 is intended for applications where very low dropout voltage, low supply current and low output noise are critical, even with high load conditions (500ma maximum). unlike bipolar regulators, the sp6203/6205 (cmos ldo) supply current increases only slightly with load current. the sp6203/6205 contains an internal bandgap referen ce which is fed into the inverting input of the ldo - amplifier. the output voltage is then set by means of a resistor divider and compared to the bandgap reference voltage. the error ldo - amplifier drives the gate of a p - channel mosfet pass device that has a r ds(on) of 0.6 ? at 500ma producing a 300mv drop at the output. furthermore, the sp6203/6205 has its own current limit circuitry (500ma/850ma) to ensure that the output current will not damage the device during output short, overload or start - up. also, the sp6203/6205 includes thermal shut - down circuitry to turn off the device when the junction temperature exceeds 170c and it re - mains off until the temperature drops by 12c. e nable /s hutdown o peration the sp6203/6205 is turned off by pulling the v en pin bel ow 0.4v and turned on by pulling it above 1.6v. if this enable/shutdown feature is not required, it should be tied directly to the input supply voltage to keep the regulator output on at all time. while in shutdown, v out quickly falls to zero (turn - off tim e is dependent on load conditions and output capacitance on v out ) and power consumption drops nearly to zero. i nput c apacitor a small capacitor of 2.2f is required from v in to gnd if a battery is used as the power source. any good quality electrolytic, ceramic or tantalum capacitor may be used at the input. o utput c apacitor an output capacitor is required between v out and gnd to prevent oscillation. a 2.2f output capacitor is recommended. larger values make the chip more stable which means an improvemen t of the regulators transient response. also, when operating from other sources than batteries, supply - noise rejection can be improved by increasing the value of the input and output capacitors and using passive filtering techniques. for a lower output cu rrent, a smaller output capacitance can be chosen. finally, the output capacitor should have an effective series resistance (esr) of 0.5 ? or less. therefore, the use of good quality ceramic or tantalum capacitors is advised. b ypass c apacitor a bypass pin ( byp) is provided to decouple the bandgap reference. a 10nf external capacitor connected from byp to gnd reduces noise present on the internal reference, which in turn significantly reduces output noise and also improves power supply rejection. note that th e minimum value of c out must be increased to maintain stability when the bypass capacitor is used because c byp reduces the regulator phase margin. if output noise is not a concern, this input may be left unconnected. larger capacitor values may be used to further improve power supply rejection, but result in a longer time period (slower turn on) to settle output voltage when power is initially applied. n o l oad s tability the sp6203/6205 will remain stable and in regulation with no external load (other than t he internal voltage driver) unlike many other voltage regulators. this is especially important in cmos ram battery back - up applications. t urn o n t ime the turn on response is split up in two separate response categories: the wake up
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 10 / 14 rev. 2 .0.0 time (t wu ) and the sett l ing time (t s ). the wake up time is defined as the time it takes for the output to rise to 2% of its total value after being released from shutdown (e n > 0.4v). the settling time is defined as the condition where the output reaches 98% of its total value af ter being released from shutdown. the latter is also called the turn on time and is dependent on the output capacitor, a little bit on load and, if present, on a bypass capacitor. t urn o ff t ime the turn off time is defined as the condition where the output voltage drops about 66% ( ) of its total value. 5 to 7 is the constant where the output voltage drops nearly to zero. there will always be a small voltage drop in shutdown because of the switch unless we short - circuit it. the turn off time of the output voltage is dependent on load conditions, output capacitance on v out (time constant ? = r l c l ) and also on the difference in voltage between input and output. t hermal c onsiderations the sp6203/6205 is designed to provide 300/500ma of continuous curren t in a tiny package. maximum power dissipation can be calculated based on the output current and the voltage drop across the part. to determine the maximum power dissipation of the package, use the junction - to - ambient thermal resistance of the device and t he following basic equation: p d = (t j(max) - t a ) / j a t j(max) is the maximum junction temperature of the die and is 125c. t a is the ambient temperature. j a is the junction - to - ambient thermal resistance for the regulator and is layout dependent. the sot - 23 - 5 package has a j a of approximately 191 c/w for minimum pcb copper footprint area. this results in a maximum power dissipation of: p d(max) =[(125c - 25c)/(191c/w)] = 523mw the actual power dissipation of the regulator circuit can be determined using on e simple equation: p d = (v in - v out ) * i out + v in * i gnd to prevent the device from entering thermal shutdown , maximum power dissipation cannot be exceeded. substituting p d(max) for p d and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. for example, if we are operating the sp6203 3.0v at room temperature, with a minimum footprint layout and output current of 300ma, the maximum input voltage can be determined , based on the equation below. ground pin current can be taken from the electrical specifications table (0.23ma at 300ma). 390mw = (v in - 3.0v) * 300ma + v in *0.23ma after calculations, we find that the maximum input voltage of a 3.0v application at 300ma of output current in a sot - 23 - 5 package is 4.7v. so if the intent is to operate a 5v output version from a 6v supply at 300ma load and at a 25c ambient temperature, then the actual total power dissipation will be: p d =([6v - 5v ]*[300ma])+(6v*0.23ma)=301.4mw th is is well below the 523mw package maxi - mum. therefore, the regulator can be used. note that the regulator cannot always be used at its maximum current rating. for example, in a 5v input to 3.0v output application at an ambient temperature of 25c and oper ating at the full 500ma (i gnd =0.355ma) load, the regulator is limited to a much lower load current, determined by the following equation: 523mw = ( [5v - 3v]*[ i load(max) ]) +(5v*0.350ma)
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 11 / 14 rev. 2 .0.0 after calculation, we find that in such an application (sp6205) the re gulator is limited to 260.6ma. doing the same calculations for the 300ma ldo (sp6203) will limit the regulators output current to 260.9ma. also, taking advantage of the very low dropout voltage characteristics of the sp6203/6205, power dissipation can be reduced by using the lowest possible input voltage to minimize the input - to - output drop. a djustable r egulator a pplications the sp6203/6205 can be adjusted to a specific output voltage by using two external resistors (see functional diagram). the resistors set the output voltage based on the following equation: v out = v ref *(r1/r2 + 1) resistor values are not critical because adj (adjust) has a high input impedance, but for best performance use resistors of 470k ? or less. a bypass capacitor from adj to v out provides improved noise performance. d ual - s upply o peration when used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground. l ayout c onsiderations the primary path of heat condu ction out of the package is via the package leads. therefore, careful considerations have to be taken into account: 1) attaching the part to a larger copper footprint will enable better heat transfer from the device, especially on pcbs where there are int ernal ground and power planes. 2) place the input, output and bypass capacitors close to the device for optimal transient response and device behavior. 3) connect all ground connections directly to the ground plane. in case theres no ground plane, connect to a common local ground point before connecting to board ground. such layouts will provide a much better thermal conductivity (lower ja ) for, a higher maximum allowable power dissipation limit.
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 12 / 14 rev. 2 .0.0 package specificatio n 8 - p in dfn
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 13 / 14 rev. 2 .0.0 5 - p in sot - 23
s s p p 6 6 2 2 0 0 3 3 / / s s p p 6 6 2 2 0 0 5 5 3 3 0 0 0 0 m m a a / / 5 5 0 0 0 0 m m a a l l o o w w n n o o i i s s e e c c m m o o s s l l d d o o r r e e g g u u l l a a t t o o r r s s ? 2012 exar corporation 14 / 14 rev. 2 .0.0 revision history revision date description 2.0.0 0 4/03/ 20 12 reforma t ted data sheet includes top package marking update. for further assistan ce email: customersupport@exar.com exar technical documentation: http://www.exar.com/techdoc/default.aspx? e xar c orporation h eadquarters and s ales o ffices 48720 kato road fremont, ca 94538 C notice exar corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. exar corporation assumes no responsibility for the use of any circuits described herein, conveys no li cense under any patent or other right, and makes no representation that the circuits are free of patent infringement. charts and schedules contained here in are only for illustration purposes and may vary depending upon a users specific application. while the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies. exar corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of th e product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. products are not authorized for use in such applications unless exar corporation receives, in writing, assurances to it s satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of exar corporation is adequately protected under the circumstances. reproduction, in part or whole, without the prior wr itten consent of exar corporation is prohibited.
mouser electronics authorized distributor click to view pricing, inventory, delivery & lifecycle information: exar: ? sp6205er-l-2-5/tr? SP6203EM5-L-3-3/tr? sp6205er-l/tr? sp6205er-l-3-0/tr? sp6203er-l/tr? sp6205em5- l/tr? sp6205em5-l-2-5/tr? sp6205em5-l-3-0/tr? SP6203EM5-L/tr? sp6205er-l-1-8/tr? sp6205em5-l-1-8/tr? SP6203EM5-L-2-8/tr? SP6203EM5-L-2-85/tr? SP6203EM5-L-3-0/tr? sp6205em5-l-3-3/tr? SP6203EM5-L-2-5/tr? sp6205er-l-2-8/tr? sp6205em5-l-2-85/tr? sp6205er-l-2-85/tr? sp6205er-l-3-3/tr? sp6205em5-l-2-8/tr? sp6203er-l-1-8/tr? SP6203EM5-L? SP6203EM5-L-2-5? SP6203EM5-L-2-8? SP6203EM5-L-2-85? SP6203EM5-L-3-0? SP6203EM5-L-3-3? sp6203er-l? sp6203er-l-1-8? sp6205em5-l? sp6205em5-l-1-8? sp6205em5-l-2-5? sp6205em5-l-2-8? sp6205em5-l-2-85? sp6205em5-l-3-0? sp6205em5-l-3-3? sp6205er-l? sp6205er-l-1-8? sp6205er-l-2-5


▲Up To Search▲   

 
Price & Availability of SP6203EM5-L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X